Gold nanoparticles as cancer theranostic agents
Authors
Abstract:
The application of nanotechnology in medicine involves using nanomaterials to develop novel therapeutic and diagnostic modalities. Given the unique physiochemical and optical properties of gold nanoparticle (GNP) such as good biocompatibility, nontoxic nature, surface properties and comparative stability, it has been widely studied in medicine, especially as a cancer theranostic agent. This review focuses on recent progresses in the field of gold nanostructures in cancer treatment and diagnosis. As far as cancer detection is concerned, several studies have indicated that GNPs can be used for X-ray, MR and optical imaging. With regard to cancer treatment, most studies have investigated the effect of GNPs in different treatment modalities like photothermal therapy, photodynamic therapy, sonodynamic therapy, drug delivery, and radiotherapy. In this paper, we have focused on reviewing the role of GNPs in improving radiotherapy efficiency as radiosensitizers. For optimization of parameters influencing the radiosensitization of GNPs, several studies have been undertaken in different scientific routes. We categorize these studies into three categories; Monte Carlo simulation, cellular studies and animal studies. Finally, according to findings reported by different researchers, the physical and biological mechanism of GNPs in generating radiosensitizing effect is discussed.
similar resources
Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy.
AIM Gold nanoparticles have attracted significant interest in cancer diagnosis and treatment. Herein, we evaluated the theranostic potential of dithiolated diethylenetriamine pentaacetic acid (DTDTPA) conjugated AuNPs (Au@DTDTPA) for CT-contrast enhancement and radiosensitization in prostate cancer. MATERIALS & METHODS In vitro assays determined Au@DTDTPA uptake, cytotoxicity, radiosensitizin...
full textGold nanoparticles as novel agents for cancer therapy.
Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as drug carriers, photothermal agents, contrast agents and radiosensitisers. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early-phase clinical trials. In particular, the pre-clinical evidence for gold nanoparticles as sensitis...
full textAntibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer
The goal of this study was to develop near-infrared (NIR) resonant gold-gold sulfide nanoparticles (GGS-NPs) as dual contrast and therapeutic agents for cancer management via multiphoton microscopy followed by higher intensity photoablation. We demonstrate that GGS-NPs exposed to a pulsed, NIR laser exhibit two-photon induced photoluminescence that can be utilized to visualize cancerous cells i...
full textA systematic review of gold nanoparticles as novel cancer therapeutics
Objective(s):The current systematic study has reviewed the therapeutic potential of gold nanoparticles as nano radiosensitizers for cancer radiation therapy. Materials and Methods: This study was done to review nano radiosensitizers. PubMed, Ovid Medline, Science Direct, SCOPUS, ISI web of knowledge, Springer databases were searched from 2000 to September 2013 to identify appropriate studies....
full textGold Nanoparticles Coated with Gadolinium Chelates as Multifunctional Contrast Agents
H. Kim, J. Park, J. Kim, T. Kim, and Y. Chang Department of Medical & Biological Engineering, Kyungpook national university, Daegu, Sankyuk-dong/Buk-gu, Korea, Republic of, Department of Applied Chemistry, Kyungpook national university, Daegu, Sankyuk-dong/Buk-gu, Korea, Republic of, Department of Diagnostic Radiology and Molecular Medicine, Kyungpook National University, Daegu, Samdeok-dong 2-...
full textGold nanoparticles as multimodality imaging agents for brain gliomas
BACKGROUND Nanoparticles can be used for targeted drug delivery, in particular for brain cancer therapy. However, this requires a detailed analysis of nanoparticles from the associated microvasculature to the tumor, not easy because of the required high spatial resolution. The objective of this study is to demonstrate an experimental solution of this problem, based in vivo and post-mortem whole...
full textMy Resources
Journal title
volume 6 issue 3
pages 147- 160
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023